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Abstract. We derive a self-duality relation for a one-dimensional model of branching and
annihilating random walkers with an even number of offspring on nearest-neighbour sites. With
the duality relation and by deriving further exact results in some limiting cases involving fast
diffusion we obtain new information on the location and nature of the phase transition line
between an active stationary state (non-zero density) and an absorbing state (extinction of all
particles), thus clarifying some so far open problems. In these limits the transition is mean-
field-like, but on the active side of the phase transition line the fluctuation in the number of
particles deviates from its mean-field value. We also show that well within the active region of
the phase diagram finite system approaches the absorbing state very slowly on a time scale
which diverges exponentially in system size. In the absence of particle diffusion the branching
process (with infinite annihilation rate) is strongly non-ergodic.

1. Introduction

In a branching-annihilating random walk (BARW) particles hop on a lattice, annihilate
pairwise on encounter, but may also spontaneously create offspring on the same or on
nearest-neighbour lattice sites. Such models appear in a large variety of contexts, in
particular in reaction-diffusion mechanisms and in non-equilibrium spin relaxation. A
generic feature of these processes is a transition as a function of the annihilation and
branching rates between an active stationary state with non-zero particle density and an
absorbing, inactive state in which all particles are extinct. Numerical results gained from a
large variety of systems suggest that the transition in models with a single (or an odd number)
of offspring fall into the universality class of directed percolation (DP) [1], whereas models
with an even number of offspring belong to a distinct parity-conserving (PC) universality
class [2—-4]. A coherent picture of this scenario is provided from a renormalization point of
view [5].

In this paper we use exact methods to first derive a self-duality relation for the BARW
model of [3]—which is a model for spin relaxation dynamics far from thermal equilibrium—
and then to address some open questions for limiting cases of this model. One considers
Ising spins in one dimension with generalized zero-temperature Glauber dynamics [6], but
with an independent coupling to an infinite-temperature heat bath which allows for Kawasaki
spin-exchange events [7] with rate/2. This spin-flip process can be visualized in the
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following way:

M=) and W=t with rate D/2
=111 and M=l with rate A 1)
=11 and =1 with rate o/ 2.

The specialh. = D (usual zero-temperature Glauber dynamics coupled to an infinite-
temperature heat bath with Kawasaki dynamics) has been studied in [8], see also [9] for
further results.

By identifying a domain wall £} or | 1) with a particle of typeA on the dual lattice
and two parallel spins with a vacan@y[10], this process becomes a BARW with rates

A = A0 withrate D /2
AA — 0 with rate A (2
BAP) = AAA and WAA = AAY with rate /2.

This is a process where the following local transitions occur: (i) particles hop with a rate
D/2 onto empty lattice sites, but with a ratg2 onto an already occupied site; (ii) a
particle creates two offspring on its nearest-neighbour sites withwé&eindependently of

the occupation of the neighbouring sites; (iii) whenever two particles meet on the same site,
both annihilate instantaneously. This results in occupancy by at most one particle on each
lattice site and leads to the processes and rates shown in (2). Particle number is conserved
modulo 2. The special case= D corresponds to the limit of the unit reaction probability

of the BARW process of [4], which in the absence of branching= 0) reduces further

to the exactly solvable process of diffusion-limited pair annihilation (DLPA) [11]. For the
derivation of the branching process from the spin-exchange process one needs to take into
account the four different possible spin arrangements next to the spins that have exchanged.

Without branching (i.e. spin exchange) the system evolves into a single absorbing state
with no particles at all. In spin language this is the totally ferromagnetic state with all spins
up or all spins down. In the presence of the branching process an intricate competition
between the zero-temperature ordering process (particle annihilation) and the disordering
high-temperature branching process sets in. The result is a non-trivial phase diagram as
a function of the system parameters. Starting from, say, a random initial state with an
even number of particles the system evolves ultimately into an inactive empty lattice for
dominant ordering dynamics, whereas it remains in an active state with finite density if
the disordering branching process dominates. Numerical evidence suggests that the phase
transition belongs to the PC universality class [3, 4].

We stress that these results are supposed to be valid only in the thermodynamic limit. In
any finite system the unique stationary state is the absorbing inactive state (ante§s,
because fon > O there is always a small probability of reaching this state from which
the system can no longer escape. However, intuitively, one expects the approach to this
state to occur on a time scatg, ~ g, which is exponentially large in a system of size
if parameters are chosen to represent the active phase of the thermodynamic limit. In the
absorbing phase, both exact analytical resultsifer D [4, 8] and renormalization group
results on diffusion-limited annihilatiorw(= 0) [12] show that the approach to extinction
is algebraic for the infinite system. For a finite system one can infer from these results a
crossover time scaley,s~ L2 to exponential decay of the particle density.

Here we aim to obtain information on the form of the phase transition line for general
rates, and on the dynamical and stationary behaviour of the system in various limiting
cases involving fast diffusion of particles (or spins in terms of the spin-relaxation model).
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Combining ideas which have their origin in the mathematical properties of integrable
guantum spin systems with notions of probability theory coming from the study of classical
interacting particle systems, we derive in secti® a duality relation which maps the
phase diagram onto itself in a non-trivial way. This duality is different from the domain-
wall duality which maps the spin-relaxation dynamics to the BARW. On a self-dual line
running across the phase diagram we obtain a relation between the (time-dependent) density
expectation value for a half-filled random initial state and the survival probability of two
single particles in an initially otherwise empty system.

In sections 3 and 4 we adopt a different strategy. We consider separately the fluctuations
in the total number of particles from the spatial correlations within a configuration of a given
fixed number of particles. By separating the hopping time scale from the branching and
annihilation time scales one can then gain insight in the behaviour of the system in the
absence of spatial correlations. In section 3 we study the system in the fast-diffusion limit
D — oo of the BARW (2) (section 3.1) and in its spin-relaxation formulation (1) in the
dual limit of infinite spin-exchange rate In these limiting cases all spatial correlations are
washed out and one expects the PC transition to change into some other, mean-field-type,
phase transition. However, in contrast to a traditional mean-field approach, our treatment
keeps track of the exact fluctuations of tia¢éal number of particles (or spins respectively).

Our treatment is not an approximation, but yields rigorous results in these limiting cases
for which we calculate the stationary density and density fluctuations (section 3.1) and
fluctuations of the magnetization (section 3.2). Using random walk techniques we analyse
to what extent the system deviates from mean-field behaviour and we also identify the
exact phase transition point. In section 4 we investigate by similar means the dynamical
behaviour of the finite system in the active region of the phase diagram. We show that for
fast diffusion the relaxation to the absorbing state in a finite system is indeed exponentially
slow, thus confirming the intuitive argument for the signature of the active region in a finite
system.

In section 5 we conclude with some final remarks. Throughout this paper we restrict
ourselves to the sector with an even number of particles. For some special properties of the
sector with an odd number of particles we refer the reader to the exact solutian=fap
of [4].

2. Duality relations

We define the BARW in terms of a master equation for the probalflity; 7) of finding, at
time ¢, a configuratiom of particles on a lattice of. sites. Here; = {n(1), n(2), ..., n(L)}
where n(x) = 0,1 are the integer-valued particle occupation numbers atasiteFor
definiteness we assumg to be even. Using standard techniques [13] we express the
time evolution given by the master equation in terms of a quantum Hamiltonian formalism
(for a review see [14]). The idea is to represent each of the possible particle configunations
by a column vectoin) which together with the transposed vect@ys form an orthonormal
basis of a vector spack = (C?)®L. One represents the probability distribution by a state
vector|P(1)) = Znex P(n; t)|n) and writes the master equation in the form

d
g Pty =—mlH|P@) ©)

where the off-diagonal matrix elements éf are the (negative) transition rates between
states and the diagonal entries are the inverse of the exponentially distributed lifetimes of
the states. In formal analogy to the quantum mechanicald8alger equation we shall
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refer to H as the quantum Hamiltonian. A state at time= 7o + ¢ is given in terms of an
initial state at timery by

|P(to+ 1)) = € "'|P(to)). (4)

We stress that the physicists notion ‘quantum Hamiltonian’ for the matrix somewhat
misleading in so far a#/ is, in fact, the generator of the Markov semigroup of the process,
rather than the Hamiltonian of an actual quantum system. This by now well established
notion has its origin in the fact that for various stochastic processes the genArasor
identical to the quantum Hamiltonian of some well known spin system. An example is
the symmetric exclusion process &£ « = 0) [15] in which caseH is the Hamiltonian
of the isotropic Heisenberg ferromagnet [16]. In this context we would also like to point
out that the quantum mechanical expectation valuyes= (V|A|W¥) for an observableA
are calculated in a different way than the probabilistic expectation values for a function
F(n) of the stochastic variables. In the quantum Hamiltonian formalism one writes
(F) = ZneX Fm)P(n;t) = (s|F|P(t)) with the matrix F = ZneX F(n)In){(n| and the
summation vectogs| = qux<77| which performs the average over all possible final states
of the stochastic time evolution.

For our considerations the expectation valyé) = (s|ni| P(¢)) for the density at site
k is of special interest. It is given by the projection operatowhich has value 1 if there is
a particle at sitd and 0 otherwise. In the following, an initial distribution with particles
placed on sitegy, ..., ky with probability 1 is denoted by the column vectotks, .. ., ky).

The empty lattice is represented by the ved@®t The uncorrelated product distribution,
where on each lattice site the probability of finding a particle is equal/®, is given in
terms of the transposition of the summation vectofa®) = (s|"/(2%). In probabilistic
language this represents the Bernoulli measure with dengity 1

To obtain the Hamiltonian for the time evolution of the BARW (2) we note that one can
represent any two-state particle system as a spin system by identifying a particle (vacancy)
on sitek with a spin-up (down) state on this site. This allows for a representatidih iof
terms of Pauli matrices wherg = (1 —o;)/2 projects onto states with a particle on site
andv;, = 1—ny is the projector onto vacancies. The off-diagonal matrjt,fe& (o} Lio})/2
create ;) and annihilate ") particles. We stress that in the present context the ‘spins’
are just convenient labels for particle occupancies which are conceptually entirely unrelated
to the spins of the spin-relaxation model (1) which is treated later. Using this pseudospin
formalism one finds

1
+ .- -+
H = > Z{D(”lkvk+l + Ukng1 — S S — Sk Spat)
k

+20(ngnge1 — s,js,;il) +a(l—of_107 )ng}. (5)

Each part of this stochastic Hamiltonian represents one of the elementary processes (2) and
we may write

H(D, ), o) = DHSEP 4+ J HRSA 4 o HBARW, (6)

Here HSEP represents hopping of hard-core particles, i.e. the symmetric exclusion process
[15], the pair-annihilation process encoded HSA corresponds to random-sequential
adsorption [17] anddBARW describes the pure branching process with instantaneous on-site
pair annihilation [4]. The time evolution conserves particle number modulo 2. Here we work
only on the even subspace defined by the projecter Q)/2 whereQ = (-1 =[], of.

The projection on the even sector of the uncorrelated initial state with a derigifg fjiven

by the vector|1/2)eve"= (1/2)L—1|s)even
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Within the same framework the stochastic Hamiltonian for the spin-flip process (1) can
be written in terms of Pauli matrices as follows

1
HSF = 3 Z[(l —o)wi(D, M) + a(l— oo, (L — of0f )] (7)
k

with the generalized Glauber spin-flip rates encoded in
w (D, 1) = (2— 0;_,08 — 030, (D+ A+ (A — D)og_,0,,1)/2.

For this process the spins represent the actual spin configurations of the spin-relaxation
process. We recall that the usual zero-temperature Glauber dynamics—equivalent to DLPA
in particle language—correspond 0= D, « = 0. For this model the domain-wall
correspondence [10] between the BARW and the spin-flip process can be rigorously derived
as a similarity transformation on the level of the quantum Hamiltonian description. There
exists a transformatio such that#S" = BHB~! [18]. The generalization = D, « > 0
corresponds to the exactly solvable process introduced in [8].

Consider now the transformatidd. which is, for the even particle sector, defined by

Dy =y1y2... V201 8)
where
ya—1 = 3[(L+Dog — (1 —1)] )
yar = 31+ Doy opy — (L—1)] (10)
and defined byD_ = —D,o; for the odd particle sector [19,20]D, is unitary and
transforms Pauli matrices as follows:
1 ox of k#L
Dilak 01Dy = { Qo k=L (11)
oo} k#L
Dlof, Dy =1 F 12
+ Yk+1 + {:l:QUzo']:_L k — I ( )

In [21] it was observed that this transformation m&j3-"A, obtained fromH by setting
L = D anda = 0, onto its transpositionH®-"A = D(HP"A)TD~1, and thus generates
a set of relations between various expectation vdluétere we go further and apply this
transformation to the HamiltoniaW = H (D, 1, @) (5) and transpose the operator which
results from the transformation. Using (11) and (12) we find
HSEP_) HBARW

HBARW_) HSEP
HRSA_) HRSA+HSEP_ HBARW

and hence the relations

H = )H®"+ )+ ) HSEP+ (D — \) HBARW (13)
which has the same form as the original Hamiltonian (6), but with rates
A=A D=1+« @=D— A (14)

The transformation (13) is a duality transformation; we obtain the identity transformation
if we apply the transformation twice.

1 Such a relationship between stochastic processes is called an enantiodromy relation, as opposed to a similarity
transformation like the domain-wall duality which relates one stochastic Hamiltonian to another, rather than to its
transposition.
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On the mean-field phase transition lihe= D > 0 [22] the system is exactly solvable
[4,8,9] and belongs in its entirety to the inactive phase. Hence the whole regio® > 0
is in the inactive phase. Duality maps the interesting regiah D which contains the phase
transition line non-trivially onto itself. Thus duality can be used to relate physical quantities
at different points of the parameter space. In particular, thelire D > 0 is mapped
ontoa = 0. The dual process is a pure annihilation process which proves directly without
calculation of specific expectation values that the line D > 0 belongs to the inactive
phase.

The regions < D contains a self-dual line

D=\+u« (15)

in which every point maps onto itself. In the notation of [B] = p,, = I'"*(1 — §),
A= pam = I'Y1+68 anda = 2p, = 2(1 — 2r 1) is normalized such that
Pex + Pruw + Pan = 1. With a parametrization in terms éfand p,, the dual rates are given
by §= _2pex/[1 + Pex + 8(1 - pex)] and p;x = _8(1 - pex)/[S(J- - pex) + 2(1 + pex)]'
The self-dual line is given by the relatidh= —2p,, /(1 — pey).

The duality transformation not only maps the phase diagram onto itself, but also
generates relations between time-dependent expectation values. Consider the expectation
value of the densityy () = (s|®V®h, e F|1/2)8Ve" where|1/2)®V®"is a random initial state
with density 1/2, projected over the even sector. This expectation value is defined at the
point (D, A, «) of the parameter space of the Hamiltonian. It is straightforward to verify
the relations

D—l|s>even — —|(| _ 1)L—1|O)
(1/2|%8"D = i(—i — 1)F~Y0|/2EL. (16)

So if we use these rules of transformation and the rules of transformation for the Pauli
matrices, given by (11) and (12), we can write the expectation value for the density in the
even sector in the form

(slng e 11/2)2v" = L0je " (1 — o} ;07)]0)
=1 — ek, k + 1)) (17)
2

where we have used (13) and the fact that the expectation value for the derisitys a

real number. The transformed initial state is a superposition of the steady state (the empty
lattice) and the two-particle state with particles at sitek+ 1. The quantity on the right-

hand side of equation (17) is one-half times the probability that the state with two particles
initially placed at sitek andk + 1 has not decayed at timeto the empty state, measured
with the transformed rates, D, @ (14).

This is a specific result for the time-dependent density starting from a random initial
state with density 22. More general transformation properties of time-dependent correlation
functions can be obtained following the strategy of [21]. We conclude this section by
pointing out that analogous enantiodromy relations can be derived for a discrete-time version
of the process which corresponds to a sublattice parallel updating scheme rather than the
random sequential updating represented by the stochastic Hamiltonians (5) and (7). Such a
parallel updating scheme (which we expect to retain all the universal features of the model)
consists of four steps. In a first updating sweep, update all spins on the even sublattice in
parallel according to the generalized Glauber rules, but with the katesd D now taken
as actual probabilities. In a second step one updates the odd sublattice. In a third step one
applies a sublattice parallel pair-updating scheme to implement the Kawasaki spin-exchange
process with probabilityx/2: in a first round one divides the lattice into even/odd pairs
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(2k, 2k + 1) and exchanges spins within each pair with probahilit@. Finally one updates
with the odd/even pairs. This completes a full updating cycle. The stochastic time evolution
of this process may be written in terms of the transfer matrix

T5F = Toliid(a) Te‘flen(a) To(gid()L . D) Te(\alen()L . D) (18)
where
L/2
7§JLLD=[H1—a—apquJVq (19)

and an analogous expression fl}jfjd The spin-exchange transfer mati¥| 7K., is the
well known transfer matrix of the six-vertex model [23] defined on a diagonal square lattice.
One has

L/2

even l—[[l —a(l— o305, —0505.1)/4] (20)

k=1
The transfer matrix for the related BARW model can be obtained by applying the similarity
transformation3 of [18]. One can then derive a duality relation in the way described above.
The transformed process has the same elementary transitions, but with a different updating
seguence.

3. Phase transition for fast diffusion

It is intuitively clear that the PC phase transition in the system originates in the complicated
structure of the density correlations which are built up by the competing processes of
branching and annihilation. For a better understanding, considei fies0. This reduced
process includes (besides diffusion) branchihg> 3A and conditional pair annihilation

3A — A, which both require the presence of surviving particles to take place. As a result,
there are two stationary distributions: the empty lattice, and the random distribution where
each particle configuration is equally likely. Since there is no transition channel from the
occupied lattice to the empty lattice, the system is in the active phase.

On the other hand, fax = 0 the system is in the absorbing phase, the only stationary
distribution is the empty lattice. We conclude that tineconstrainedpair annihilation
process 4 — 0 with ratex is responsible for the phase transition taking place.

This scenario is captured in a simple mean-field approach. The exact equation of motion
for the expected particle numbén (1)) reads

N(r) Z[a ni (1)) — 20 + 1) (ni (Oni1())]. (21)

Replacing the correlators by the product of the dengity = (n;(¢)) yields the mean-field
equation

d 20+ X
E(N(I)) =a(N() — %(N(I))2 (22)
with the stationary mean-field solution for the active phase
(N = —2 | (23)
M 2@+ A)

Since each lattice site can take only one particle and therefot€0, 1, one can use,? =n;
to show that the mean-field fluctuations;,, = (N?)%; — ((N*)mr)? around the mean are
given in terms of the density}; = (N); /L by

Ang = Pmi(L— pmp) L. (24)
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We conclude that the mean-field phase transition point is givemy = 0, which is
consistent with the considerations above. By duality (14) we also recover the mean-field
phase transition line of [22].

There are several questions that we want to address in this context. The first is the form
of the exactphase transition line if both and A are very small compared to the diffusion
rate D. The second question is timature of the phase transition in this limit. D > «, A
the spatial correlations built up by the annihilatibranching process are wiped out very
quickly by diffusive mixing, leaving a transition which we can no longer expect to be a PC
transition. Finally, in the next section we study the crossover time scales on which a large,
but finite, system reaches the absorbing state.

3.1. Phase transition in the BARW

To tackle these questions we observe that for fast diffusion the process simplifies
dramatically: in the absence of spatial correlations the state of the system is fully
characterized by the total particle numh®r For fixed N, each particle configuration
occurs with equal probabilit?W!(L — N)!/(L)!, which is just the inverse of the number

of possibilities of placingN particles on a lattice of. sites. As a result, the dynamics
reduce to a random walk on the integer se2,&, ..., 2K, ..., L of total particle number

N = 2K. Thus we may represent the dynamics as a random walk on a one-dimensional
lattice of L/2 + 1 sites, where the position of the random walker marks the number of
particles of the BARW process and 0, representing the empty lattice, is an absorbing point.
It remains only to calculate the hopping raigsand ¢y from site N to the right (v + 2)

and left (v — 2), respectively. The state of the system is then given by the solution of the
master equation

d
EPN(I) =ry_2Py_2(t) + €y12Pny2(t) — (ry + €n) Py (1) (25)
for the probability of findingN particles in the system. The average particle number is
given by (N (1)) = }_y NPn (DT

By counting the number of possibilities of finding two vacancies on neighbouring sites
of an occupied site in a random state Mfparticles one readily finds

a N(L-N)(L—-N-1)
N ==
NT2T -0 -2

as the contribution from the branching process with tgt2. An analogous consideration
gives

(26)

. 1PNW—DW—3 me—n}
-

2| @-1(L-2 (L — 1)
as the contribution from the annihilation processds-3 A and 24 — 0, respectively.

These rates represent a biased random walk which in the thermodynamié limibo
and for fixedN reduces to a directed random walk in the positive direction with increasing
hopping rate'y = «N/2. Since forD — oo the branching process is not diffusion-limited,
the particle number increases exponentially in tifw(z)) = (N(0))e*'. Thus for any
o > 0 the system is in the active phase, i.e. the phase transitionds=at0 which is
consistent with the mean-field result (23). For a large, but finite, system with a small initial
number of particles one expects a slowing down of the exponential growth when a finite

(27)

1 This and the other limits of fast rates discussed in this paper can be treated rigorously by taking the limit of
large rates in the formal solution (4) of the master equation, see [14] for details.
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density is reached, i.e. on a time scale of the ordék ). Ultimately, though, the finite
system will reach, by a rare fluctuation in the number of particles, the absorbing empty
lattice. This second crossover time to absorption is discussed in the next section.

To study the stationary behaviouy ) Py (r) = 0 of the system we rescale the lattice
to unit length and expand the right-hand side of the master equation (25) in a Taylor series
in the lattice spacing /L. Settingx = N/L and keeping the leading-order term yields
the equatiort = 2(l, — r,) P}. The integrability conditionfo1 dx P = 1 on the stationary
probability distribution requires the integration constand vanish. The resulting equation
has the solutiorP} = §(x), corresponding to the absorbing state. The only other integrable
solution on the interval [0,1] is the delta-functid®} = §(x — p*) with

% o
P et r) (28)
This gives the exact stationary density of the active phase which, not very surprisingly,
coincides with the mean-field value (23).

To determine whether the system in the infinite-diffusion limit actuala mean-field
system we investigate the fluctuations around the mean (28). The mean-field result (24)
requires studying the fluctuations on a length scale of opderv/L(x — p*). Keeping all
terms to this order in the Taylor expansion of the master equation aroung* gives the
ordinary differential equation

d y
—P=——"—SP]. 29
dy * 20*(1—p"> "’ (29)
The solution of this equation is a Gaussian which gives the exact fluctuations in the particle
number

A* = 2p*(1 — p")?L. (30)
Except fora = 0 (p* = 1/2) this expression is in disagreement with the mean-field result
(24), indicating a non-trivial effect of the unconstrained pair-annihilation process even in the
fast diffusion limit. We conclude that the system undergoes a mean-field transition, but with

fluctuations in the particle number which deviate from those predicted by the mean-field
approximation.

3.2. Spin-relaxation formulation

We consider the system in the dual linit— co where we can study the phase transition
between the active phase and the absorbing phase in terms of the dimensionless variable
u= (D —X)/(D+ ). In the spin-relaxation picture this is the limit of fast Kawasaki spin
exchange where the system is spatially uncorrelated and hence completely characterized by
the total magnetizatio = ), o/2. The dynamics of the process (1) reduce in this limit

to a random walk in the magnetization variable ranging from—L/2 to L/2. The master
equation reads

d
EPM(t) =ry—1Py—1() + Cyy1Pysa(t) — (ryr + €y) Py (2). (31)

The transition rates for this random walk with absorbing boundarie® at +L1/2 are
readily calculated as

D+ A 2Mu \ [ L?
= 1-— — —M? 2
" 2L—2< L—Z)( ) (32)

D+ 2Mu \ (L? ’
ly = 1 — —M?). 33
=1t )( ) 33
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We find a bias towards to the boundarils= +1/2, i.e. the fully magnetized absorbing
states with all spins up or down, respectively, fiox 0. Foru > 0 the system is biased to
the centre, corresponding to the active phase.

For an initial state which is symmetric under spin fip — —s; the mean(M)
vanishes for all times in both the active and absorbing phase and hence is not suitable
to characterize the system. For the same reason, a naive mean-field approach by setting
(af(t)of(t)) = (of(t))(of(t)) would not give any information on the dynamics of the
spin fluctuations. The quantity that characterizes the phase transition are the fluctuations
(M?) = Y",, M?Py(t) in the magnetization, i.e. the mean-square displacement of the
random walk. In the active regime this quantity is proportional to the system size, whereas
in an ordered stateM?) ~ L2,

First consider the phase transition point= 0. From the considerations above we
know that the stationary state is inactive. The only question of interest is the approach
to stationarity from some random initial state. From (31) one obtajsri{M?) =
20(L?/4 — (M?))/(L — 1) which is readily solved by

(M?(1)) = L?/4+ ((M?(0)) — L?/4) e 2!/(=0, (34)
The approach to the stationary value is exponential on a time scale
L-1
=" 35
T=— (35)

For large system size and initial timesk L, the fluctuations in the magnetization grow
linearly in time.

For u # 0 the equations of motion for the moment®# %) are too complicated for
direct analysis. We definé/ = M/+/L and study only the thermodynamic limit. Using
the master equation (31) the stationarity conditigindd) (/%) = 0 for the moments o1
yields the recursion relation

(M%) = (2k — 1)(M*2)/(4u) (36)

which shows that the stationary distribution in the active phase 0 is Gaussian with
variance 1 (4u):

Py = | 2 e, (37)
T

This yields the final result

. 1/(4 >0
Wi = { VA0 (38)
00 u < 0.
All other stationary moments in the active regime follow from the Gaussian nature (37) of
the statistics. We read off a critical exponant= 1 for the divergence ofM?) with u as
the system approaches the critical paint 0.

4. Relaxational behaviour in finite systems

The exact solution [8] for the dynamics of the spin—spin correlation function on the line
A = D implies a crossover time ~ L2 from a power-law relaxation to exponential
relaxation to the absorbing state. One then expects this to hold throughout the inactive
phase.

On the other hand, any finite system has only one stationary state, which is the empty
lattice in particle language, corresponding to the magnetically ordered states with all spins
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up or all spins down. 1t is, therefore, of interest to study the relaxation towards this state
in that region of parameter space that constitutes the active phase of the infinite system.
The precise location of the phase transition line is not known, but we know that the line
A = 0 (no unrestricted pair annihilation) belongs to the active phase and thus we may get
some insight by studying the system in the immediate neighbourhegdy, D of this line.
To this end we adopt a similar strategy as in the previous section by assaninbe so
small that the system had sufficient time to relax toiits O stationary distribution between
two successive pair-annihilation events. This limiting procedure can be made rigorous by
takinga — oo and keeping. and D fixed.
In this limit the system reduces effectively to a two-state system, i.e. the system is
completely characterized by stating whether the system is empty (Bfater not (which
we denote by1)). The latter state represents the stationary distribution of the system with
A = 0 in which, because of detailed balance for this reduced process, all states with an even,
non-zero number of particles have equal probabpity: 1/[2“~Y —1]. The transition rates
between these two states characterizing the system are then trivial to work out: the transition
from |0) to |1) is zero becaus#) is an absorbing state. On the other hand, counting the
number of states represented |dy for which a pair annihilation event leads to the empty
lattice yields a transition rate

1/tact= (AL)/[247Y — 1] (39)

for transitions from state 1 to state 0. Hence, at timdéhe system is in the absorbing
state with probabilityPo(r) = 1 — e~/ and in each non-empty state with probability
Py(r) = e!/me/[20070 — 1],

For the particle density this behaviour implies the exact result

e—l‘/fact

2—(1/2)L°
Because of the fast intermediate relaxation to the equilibrium state af theco process
the density and the density correlations have no spatial dependence and the diffusion rate
does not appear in the expression (39). The crossoverdigor reaching the absorbing
state in the active region of the phase diagram for the infinite system (andllverges
exponentially with system size.

Finally, we study the dynamical behaviour of the system for large, but fihite, the
limit of fast diffusion discussed in section 3.1. We recall relation (17) which relates the
decay of the particle density to the survival probability of two neighbouring particles in an
empty lattice. This quantity can be interpreted as a first-passage-time distribution for two
annihilating and branching random walkers: when two random walkers in an empty lattice
annihilate for the first time, the dynamics stop. Therefore, the density decay equals one half
this first-passage-time distribution and the mean-first-passage-time (MFPT)

p(t) = (40)

T = / dr (Ol 'k, k + 1)
0
=1 ‘Iim0(0|(H +o) Yk, k+1) (41)

gives the crossover time scale on which the system reaches the absorbing state.

This quantity can be evaluated numerically for any point in parameter space by inverting
the time evolution operatar+ H for finite system size, then taking the matrix element (41)
and finally calculating the limit — 0. For an analytical treatment for large we note
that the MFPT from some siteto an absorbing sité = 0 for a general random walk with
nearest-neighbour hops dn+ 1 sites can be expressed in terms of the hopping rates [24].
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In the mapping of the BARW to the random walk the MFPTs equal to the MFPT of the
random walker starting at site 2. With the hopping rates (26) and (27) we find after some
rearrangement of terms

1 L2

T= > (42)

k=0
with
LYK'TOAM(L —2)/a + 1)

T2k + 2L -2k —2'TML —2)/a+k+1)

We note first that in the limik — oo the MFPT coincides with the relaxation time (39),
as expected from duality. To study the asymptotic behaviourfof finite « (active phase)
we determine the valugy for which ¢; gives the largest contribution to the sum on the
right-hand side of (42). We findg = p*L/2 with the stationary density given by (28).
Using the Stirling formula for the gamma function and expandipgroundkg yields for
non-vanishing densityp* the asymptotic form of the crossover time

1ra- Zp*)(l—Zp*)/(Zp*) L
TaCt ~ X [ (1 — p*)(lfp*)/(l’*) }

(43)

Ck

(44)

up to subleading power-law corrections in system size. Therefore, in the active region of
the phase diagram the crossover to absorption in a finite system takes place on a time scale
which diverges exponentially in system size, with a density-dependent amplitude.

For p* = 0, i.e. in the absorbing phase, the MFPT can be read off directly from (42)
and (43), since only the term with= 0 contributes. One finds

(L-1)
2
This power law differs from the crossover behavioups ~ L?/D for finite diffusion

constantD. The MFPT for this point in parameter space coincides with the relaxation
time (35) in the dual point.

(45)

Tabs =

5. Final remarks

The duality relation (13) divides the parameter space into two distinct regions separated by
the self-dual line (15). Both regions are mapped onto each other and hence have the same
physical properties. This is of practical usefulness for a numerical survey of the system
and for the determination of the phase transition line since only part of the parameter space
needs to be investigated.

In particular, the lineD = A maps onto the linee = 0. The limiting case of vanishing
diffusion A = D = 0, describing a pure branching process with infinite on-site pair-
annihilation rate, is mapped onto the symmetric exclusion proceswithe. We conclude
that the generator of the pure branching process has a higidé?) symmetry. This non-
Abelian symmetry is manifest in the symmetric exclusion process [25] and implies strong
non-ergodicity of the pure branching process even within the sector of even particle number.
The number of stationary distributions in finite systems grows linearly with system size.

The opposite limit of fast diffusion (but £ D kept finite) maps to the limiix — oo.

The observation that for larg® any smalla brings the system into the active phase
translates into a phase transition &t = 2 in the limit « — oo. This result clarifies
the unresolved issue of the location of the phase transition line for karg&lumerical
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analysis of the model for large ratesis reported to be very difficult [3,22]. Our exact
result confirms the conjecture of [3] on the location of the phase transition point in this
numerically untractable limit. In thé — p,., phase diagram of [3] the limitt — oo
corresponds tg,, — 1 and the phase transition poift = A corresponds té = 0. The

dual limit D — oo covers the neighbourhood of the poiht= —1, p,, = 0. Our result
translates into an infinite slope of the phase transition line in this representation at this point.
In the active phase of this region the exact stationary particle number distribution is Gaussian
with a stationary density* given by the mean-field value (23). The density fluctuations
(30) deviate from the mean-field result (24) by a fact¢t 2 p*). It may be worthwhile
pointing out that the phase diagram of [3] shows that there is a phase transition in the one-
dimensional BARW even at infinite on-site annihilation rate. In this version of a BARW
the phase transition is not generated by the competition between on-site annihilation and
branching, but by the subtle competition between repulsive particle interaction and nearest-
neighbour branching. Even a very weak repulsive interactioanly slightly less thanD)

leads to a phase transition for a sufficiently high branching rate.

On the self-dual line we find from (17) that the density expectation vajie equals
one-half the survival probability at timeof two particles placed initially at two neighbouring
sites in an otherwise empty lattice. Hence the phase transition from the absorbing phase
to the active phase may be rephrased as a mean-first-passage-time (MFPT) transition for
random walkers which branch and annihilate. We expect the MFPT in a finite system to
change from a power-law divergence (in system size) to an exponential divergence not
only at infinite diffusion rate (section 4), but also for finif2. Thus, this numerically
accessible quantity provides an alternative way of determining and characterizing the PC
phase transition.
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